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ABSTRACT

In this paper we present an algorithm to solve the static problem of associating data from three

spatially distributed heterogeneous sensors, each with a set of detections at the same time. The
sensors could be active (3D or 2D radars) or passive (EO sensors measuring the azimuth and
elevation angles of the source). The source of a detection can be either a real target, in which case the

measurement is the true observation variable of the target plus measurement noise, or a spurious one,
i.e., a false alarm. In addition, the sensors may have nonunity detection probabilities. The problem is

to associate the measurements from the sensors to identify the "real" targets, and to obtain their

position estimates. Mathematically,this (static) measurement-target association problem leads to a
generalized three-dimensional (3-D) matching problem, which is known to be NP-hard. In this
paper, we present a fast, but near-optimal 3-D matching algorithm suited for estimating the positions

co of a large number of targets (>50) in a dense cluster for real-time applications. Performance results
on several representative test cases solved by the algorithm are presented.
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I. INTRODUCTION

The problem context for this paper is as follows: we are given a set of three heterogeneous

sensors at different locations in a given surveillance area, each with a number of detections at a given

time. With each detection, there is an associated measurement originating from a source. The set of

sensors can consist of passive (Electro-Optical or ESM) and active (3D or 2D radar) sensors. A

passive sensor measures the azimuth and elevation angles of the source, a 2D radar measures the

range and azimuth angle of the source, while a iD radar measures its complete position. Other

configurations of sensors can also be used, e.g., with jammed radars. The source of detection can be

either a real target, in which case the measurement is the true observation variable of the target plus

some measurement noise, or a spurious one, i.e., a false alarm. We allow for missed detections by

the individual sensors. In addition, each sensor has afinite resolution. Therefore, not all targets are

detected by all sensors. The problem is to identify the number of targets present in the scenario, and

find their (static) position estimates. The central problem of multisensor multitarget state estimation is

that of data association - the problem of determining from which target, if any, a particular

measurement originated. Measurements originating from a particular target can then be

3D-triangulated to estimate the states of the target. Typical applications are in sonar tracking and

space surveillarne using passive sensors and radar tracking in the presence of electronic

countermeasure

For sparse scenarios, one may be able to place most targets into "unique" target planes defined by

the sensors (EO or 3D radar) and a target. However, in scenarios involving a large number of targets
in a dense cluster (for example a squadron of jets flying in formation), multiple targets may appear

in a given plane resulting in the spurious (ghost) targets due to false triangulations of the line of sight

measurements. The ghosting effect can be significantly reduced by using three sensors. A global

optimization algorithm can then be employed to identify the most likely associations. Unfortunately,

the 3-D I matching problem can be shown to be NP-hard 2 [21, even under the assumption of zero

false alarm and unity detection probabilities.

I For the matching problem, the number of dimensions is equal to the number of lists to be matched. Therefore, the
dimension of the matching problem is the same as the number of sensors in the scenario. To avoid any confusion, the r
dimension of the matching algorithm is referred to as "3-D, and that of the measurement space as "3D".

2 This means that an optimal algorithm for the multisensor (>3) data association problem with a run-time bound that

is a polynomial function of the number of sensor reports exists if and only if all the combinatorial problems
belonging to class-NP, including the traveling salesman, maximum clique, and the satisfiability problems can be
solved in polynomial time [1]. The evidence indicates that in all likelihood any problem which is NP-hard can not be
solved by an algorithm of polynomial time complexity, CS
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In this paper we develop a three sensor data association algorithm suitable for dense clusters. The

key features of the algorithm are as follows. First, we provide a unified framework to consider

two-sensor and three-sensor detections. In dense clusters, sensor limitations may result in missed

detections. Therefore, a certain number of targets are to be resolved using two-sensor measurements

only. In our formulation, we assign dimensionless "costs" to two-sensor or three-sensor

associations, thus enabling us to globally optimize the set of three-sensor and two-sensor detections.

Second, we are not restricted to passive sensors only. In this paper, we present techniques to

associate data from passive sensors, 3D and 2D radars. Our methodology extends naturally to any

sensor type (Azimuth-only passive, jammed radars etc.). And third, we have developed a fast,

iterative, near-optimal polynomial-time algorithm to globally optimize the association accuracy of

measurements to targets detected by at least two sensors. The algorithm provides a conservative

estimate of the proximity of a feasible solution to the optimal solution. Thus, in time-critical

situations, we may truncate the algorithm at deadline, and still have a good feasible solution, and a

measure of its accuracy. Solutions generated by the algorithm are typically within 2% of optimality.

The details of the Lagrangian (dual) relaxation algorithm may be found in [3,4]. The Fortran Source

Code of the algorithms presented in this paper are also available with the interactive software [5].
The performance results for some typical scenarios are presented in Section 3.

II. PROBLEM FORMULATION

2.1. The Model

We assume that the position of target t is described by its Cartesian coordinates,

=[Xt Yt zt T  (2.1)

and that there are-T targets in the surveillance region (T unknown and to be estimated by the

algorithm). The three sensors are assumed to be non-collocated with known sensor positions

Js = [X, Y, ZJ , s = 1,2,3 (2.2)

We allow missed detections and false alarms in our problem formulation. Each of the sensors can

be one of the three types: a 3D radar, a 2D passive sensor or a 2D radar. The passive sensor

measures the azimuth angle 0st and elevation angle (pst of each potential target t. A 2D radar measures
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only the azimuth angle 0st and the range rst. A 3D radar measures all three, that is, the azimuth angle

0st, the elevation angle (pst and the range rst. In order to present a unified sensor model, we define a
(nonlinear) transformation H s on the true position vector w and sensor position s that generates

the measurements. Let

rnst = Hs (_t, w,) (2.3)

where, mst =[ s, (pst] for a passive sensor, mst = [ 0, rst] for a 2D radar and = [

rstI for a 3D radar.The measurement is ( is = 1,2.., ns) of sensor s is modeled by:

m.mt + _s if origin is target t
Zsis = (2.4a)

WS i, if spurious
and

Zsis =[ Zsis (1) Zsis (2)] (2.4b)
for passive sensor and 2D radars; and

Zsis  Zs (1) Zsis (2) zsis (3) 1 (2.4c)

for 3D radars. The statistical errors associated with the measurements of true targets are assumed

Gaussian

vi- N (0, Y- s )(2.4d)

where YS is a diagonal matrix with the diagonal elements denoting the variance of the measurement

errors.

The measurement noises are assumed to be independent across sensors. We let PDs denote the

detection probability of sensor s. We assume that the density of spurious measurements is given by

p,,,(w) =- (2.4e)

where 's is the field of view ()f sensor s. For example, Ts=O&~ r if sensor s is a 3D radar-

where P0 is the azimuth field of view, and To is the elevation field of view and Tr is the range

field of view. The spurious measurements are independent of each other and of the target

measurements.

To simplify the notation for incomplete measurement-target associations caused by missed

detections, we add a dummy measurement 7,,( to each of the measurements of sensor s. We denote

the set of measurements from sensor s (including the dummy measurement z,( ) by
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Zs= {zi }= (2.5a)

and the set of measurements in the entire surveillance region by:

2.2. Partitioning of the Measurements

Consider a 3-tuple of measurements denoted by

Zilii 3  = { zSi, I3= 1 (2.6)

The dummy measurements Zs() , s=1,2,3, enable us to consider all measurement-target
associations (including single and two-sensor detections) as 3-tuples. The likelihood that sensor I
missed the target at location wt and that the measurements i2 (>0) and i3 (>0) of sensors 2 and 3
originated from the target t is given by:

A( Z0 i"i- wt) ( -PDI)PD, PD3 P(Z2i ot)p(Z3i 1 t) (2.7)

In general, the likelihood function of the 3-tuple Zili21 3 being the set of measurements that
originated from the same target at lcation wot is the mixed probability density-probability function

3

A( Z,1 i,13 I = 171 [ PDsP(Zs, 1)) ]u(i ' ) [I -PD,] 1 - u(i) (2.8)

where u ( i s ) is the binary indicator function defined by

( , = 0 denoting a missed detection by sensor s (2.9)
- otherwise

Denote by

7 =( , zf (2.10)

a feasible partition of the set Z into two subsets, namely, the subset of 3-tuples of measurements Zt
- f Zi i2i3" is = 01 ,2,.... 5 n; s =1,2,3 } associated with targets (tuples with at most one dummy
measurement, i.e., 2 or 3 actual measurements), and the subset Zf { zsis: is = 1,2 ,..,ns ; s = 1,2,3
- { Zil , ZOi 0, Z00i3 : is = 1.2,...n s s = 1,2,31, of spurious measurements not associated

with any target (tuples with one actual measurement). Note that a partition also implies a set of tre
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target positions (at the given time under consideration) to be estimated.The rationale for this division

is that at least two measurements are needed for a full position estimate in the current static data

association problem.

The feasibility of the partition requires the following

(1) Each sensor measurement belongs to a target or a false alarm

Z = Z t U Zf (2.11)

(2) Each sensor measurement belongs to one target only (Note that the dummy measurements may

be associated with multiple targets. In other words, an unlimited number of dummy measurements,

each associated with a unique target, may be added to the partition.)

Zii i2 6f n Zi'l V2 13= 0 for any isi's (is#O,i's#O),s= 1,2,3 (2.12)

Corresponding to a partition y, one has the event

(y) partition y is true } (2.13)

We denote the set of all feasible partitions as

F = { I ) (2.14)

In order to normalize the likelihood function so that it is independent of the number of

measurements from each sensor and of the number of hypothesized targets, we define the partition

e I as

Yo- Zt = OZf = Z }  (2.15)

The partition yo corresponds to the hypothesis that the number of targets T is zero, and that all

measurements are spurious.

The most likely partition of the measurement set Z into target-originated measurements and false

alarms is obtained by maximizing, over the set ot all feasible partitions F, the ratio of the joint

likelihood function of all the measurements in partition y to the likelihood function (LF) of all the

measurements in partition yo. Note that this ratio is a dimensionless quantity. The maximization
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problem on the resulting likelihood ratio (LR) 3 is thus given by:

max L(y) (2.16)
y c r L(yo)

where

L(y)=p[ZI ()]=[ H- A( Zi, i, , It)]

Zj1 i2 i3E Y

3

[ I (1-)-n,-lT,(y)] (2.17a)

S T1

and Ts (y) is the assumed number of targets in partition ythat are detected by sensor s, and

3
L ( ,= p[ Z I (yo) I (1)n, (2.17b)

s=1 Ts

Since the true target positions w are unknown, we maximize the generalized likelihood ratio,

wherein the true target positions in Eqs. (2.8) and (2.17 a) are replaced by their maximum
likelihood estimates o ), obtained from the 3-tuple of measurements Zi, i2 i3. That is,

ot= arg max A ( Zil i2 i3 I o) (2.18)ot

Therefore, Eq. (2.17 a) is replaced by

L(y)=p[ Z!Y)j = H A(Zij ii2 i1 6 )]
z-ili 2i3 66

3

s -(L)n,-T,(Y) (2.19)

Since the LF, being a pdf, has a physical dimension, one cannot compare, for example, the LF of two targets with

the LF of three targets. However, this comparison is possible using LR, since it is a dimensionless quantity [6J.

where
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" "3 7..I O S

A Zili2 13 I-- 1 ) =1 F [PDsN(PMs )]U(is)
s=l

1 - PDs{1 u(is)} ] (2.20a)

and (using 2.3)
, ( , ) (2.20b)

Note that, for a single sensor detection, U can riot be estimated uniquely from Eq.(2.18) in the current

static formulation. (However, when the static data association algorithm is used in a dynamic

tracking application [7,81, these single measurements can be combined with existing tracks to update

target position estimates.) To avoid targets with unobservable states, we make the assumption that a

target is detected by at least two sensors Thus, the 3-tuples of the form 71,00 (or Z40 2 0 or Z00i3)

are uniquely associated with the subset 4 only, and, therefore represent spurious measurements in

the current static formulation. In the dynamic tracking application, single sensor detections and

spurious measurements are distinguished.

2.3 Measurement Partition as a 3-D Matching Problem
The maximization problem posed in Eqs. (2.16)-(2.20) is equivalent to the minimization of

negative log-likelihood ratio given by"

J m 1an J (7) =min [In L (yo) - InL(y (2.21)
y eF

The contribution of elements of Zf to the negative log-likelihood ratio cancels out (see (2.17a),

(2.17b)). Thus, Eq. (2.21) can be modified using Eqs. (2.17),(2.19) and (2.20) as:

J(y) [In L(yo) - In L(,y) = c , (2.22a)
Z1, , 1 E ZE

Cili 2 63 = {Uoi) r-In(PD s) + Ls ( i, - isi, S

* (z ,-s ,)V-L n -in [I -u(is)j In(I PDO } (2.22b)
2i I 1/2
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The minimization of the negative log-likelihood ratio can be recast as a 3-D matching problem as
follows. Define the binary event variables:

r if the 3-tuple Zili2i 3ey

Pijiil = ; i s=0,1,2,...ns;s=1,2,3 (2.23)
0 otherwise

where associations of the form {Pil00,P 020 or P00i3 denote spurious measurements. Since the
addition of measurement zlilZ Z 1 00 to subset Zf has no cost penalty, we set Cil00=Ci20=C00i3 =0.
Note that the sum of squares of the differences between the measurements zis and their estimates

SiS in Eq. (2.22) is the goodness of fit of a triplet. Since there exists a one-to-one mapping betweenthe binary events and the feasible partition y, the minimization of the negative log-likelihood
ratio can be recast as the following 3-D matching problem:

J m J (P) (2.24a)
Pit i2 i3 E P

where

rli n2 n3

j(p) Z I Cil i2 i3 Pit i2 i (2.24b)
it = 0 i 2 = 0i3=0

The constraint set P, denoting the set of all feasible partitions, is formulated as the set of linear
equalities:

p1, , i = 1 for all i3  = 1,2,..., n3 (2.25a)
i = 0 i" = 0

ni n,

I I pi., = 1 for all i2 = 1,2,..., n (2.25b)
6=0 it =0

S P X p 1 for all i = 1,2,..., il (2.25c)
i= 0 i3 = 0

The optimization problem formulated in Eqs. (2.24)-(2.25) is a generalized 3-D matching problem
presented later in Section 3.
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2.4 Preprocessing in the 3-D Matching Problem (Fine Gating)

Consider three measurements, zIi 1, z2i 2 and z3i3 (with at most one dummy) from sensors 1,2 and

3 respectively. The corresponding 3-tuple Zi1i 2'3 may be considered a candidate measurement-target

association if and only if cili 2 i3 < 0. This is because, if ci1 i2 i3 > 0, the addition of Zil i2 to the

subset Zt of measurement-target associations will actually increase the cost J(p) in Eq. (2.21).

whereas adding (zli l , z2i2 , z3 i3 ) to the subset Zf of spurious measurement has no cost penalty.

Therefore, all 3-tuples Zil i2 i with cil i2 i3 > 0 can be eliminated from the list of candidate

associations by setting the corresponding binary event variables pi t i2 i3 = 0. This is referred to as

the"fine gating scheme" in Section 3.

III. APPLICATION RESULTS

3.1 Scenario Description

If the scenano is reasonably sparse and/or the sensors are very accurate, one may be able to place

each target in a unique plane, and eliminate the problem of ghosting. A relatively simple sorting
algorithm can then pick the feasible solution. However, due to measurement inaccuracies and

nonuniform target distrihutin, multiple targets may lie in a plane. In addition, due to the finite

resolution of sensors, some targets are unresolved at some sensors. The scenario can be further

complicated by heavy clutter, and missed detections. In many cases, the false alarm probabilities are

unknown or time-varying. In this section, we evaluate the performance of our data association

algorithm under such adverse conditions.

The elevation fields of view of all three sensors 4 are (280, 330). Sensors I and 3 are 2D passive

senors measuring azimuth and elevation angles of targets. The azimuth field of view of sensor 1,

positioned at (- l()0,250,0), is ( 58.21), 63.20 ) and that of sensor 3, positioned at ( 100,250,0), is

116.,81, 121.90 ). Sensor 2 is positi ned " (0,0,0) and has a head-on view of the target cluster. Its

azimuth field of view is (87.5 , 92.5°'. We simur, late 3 different sensor configurations observing the

same scenario. In configuration 1, we use three 2D passive sensors. In configuration 2, sensor 2 is
a 2D radar measuring azimuth and range only. In configuration 3. sensor 2 is a 3D radar measuring

azimuth, elevation and range. For configurations 2 and 3, the range field of view of sensor 2 is

(2275, 2425) distance units.

We usc the convention that East is io jzimuth and horiontal is ()o elevation.The reference point for our coordinate

system is sensor 2 located at (0,0,0). Eich Cartesian unit distance is equivalent to l()() meters.
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We simulated 64 targets in a cluster. They were arranged in four vertical planes corresponding to

y = 2075; y = 2050; y = 2025 and y = 20M, respectively. Each plane consisted of 16 targets. The

typical inter-target spacings are about 20 units in x and z directions for the y=2075 plane- this

spacing is progressively increased for the planes nearer to the sensors. The scenario thus simulates

64 targets in 4 wavefronts fanning out slightly as they approach the coordinates (0,0,0). In addition.

for each simulation run, we randomly verturb the target positions around its typical position.

Therefore, the actual position of a target position for a particu!ar run is given by (x + u, y + v, z +

w), where (x,y,z) is the typical target position, and u,v,w are uniform random variables in the range

1 +5,-5j.

Finite resolution of the sensors is explicitly modelled. Results are presented for three different

sensor resolution capabilities. For passive sensors and 3D Radars, the image area is assumed to

consist of 500x500 azimuth-elevation cells in case 1; '1000x 10(X) cells in case 2 and 2000x200 cells

in case 3. For 2D Radars, 5(X), I(XX) & 2000 azimuth cells are assumed. The standard deviation of

the measurement noise is assumed to be 1/5 of a resolution cell. Recall that the field of view of each

sensor is 5) in both azimuth and elevation. Therefore, (To = (T = 0.0020 in case 1, CO = G=

0.0010 in case 2, and o = ao = 0.00050 in case 3. For 2D and 3D Radars, three different range

measurement accuracies, Gr = 0.05. 0.02 and 0.01 (corresponding to 50 meters, 20 meters, and 10

meters, respectively), were simulated. For a passive sensor, if two targets are close enough so that

both their azimuth and elevation measurements are separated by less than 5 sandard deviations, a

single detection with an averaged measurement is reported. For a 3D radar, two targets are

unresolved and reported as a single detection, if azimuth , elevation and ranges of the two targets are

separated by less than 5 standard deviations. Similarly, for a 2D radar, either or both the azimuth

and range measurements of any pair of targets should he sufficiently separated to be able to resolve

the two targets.

The detection probability of each sensor was assumed to be 0.95. The false alarm rate was fixed

at 10 -5 per resolution cell for passive sensors and 2D radars, and 10 -8 per resolution cell for the

.1) radars. This resulted in rather heavy clutter for sensors in some cases. For example. for a passive

,ensor with 20 00x20O0 1 azimuth-ClCvati()n cells, the number of false alarms per sensor report is a

Poisson random variable with mean = I()-Sx2000x200() = 40, which is comparable to the number of

targets present in the scenario! Nevertheless, this heavy clutter constitutes a hypothetical, yet

possible, surveillance scenario.
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3.2 Results for Different Sensor Configurations

'Fable I presents simulation results for the 3 passive sensor case. On the average, 63 targets are
detected by 2 or more sensors, 52 of which are detected by all three sensors. The results demonstrate
a uniform association accuracy of 95%, in spite of the heavy clutter (an average of 38 false alarm
reports from each sensor) in case 3.

In many surveillance scenarios, accurate 3D radars are also available. For this simulation, Sensor
2 was replaced by a 3D Radar. The 3D radar measures full target positions. This information

appeared to aid the gating scheme, resulting in a sparse assignment graph and approximately 25%
reduction in the CPU time over the 3 passive sensor case. Moreover, the association accuracy and
position estimates are also marginally improved, as shown in Table II. Table III presents the results
for different range measurement accuracies of the 3D Radar. An improvement of range accuracy has
little effect on the association accuracy for this particular scenario.

Case I Case 2 Case 3
500 cells 1000 cells 2000 cells

Total Number of False 9.21 31.5 114
Alarms in scenario

Targets detected by 2 63.13 62.74
or mor. sensors

Targets detected by 11.58 11.63 11.77
only 2 sensors

Number after
Coarse Gating 240.39 220.8 214.8
Number after 240.35 220.8 214.8
Fine Gating 240.35 -_._.

Average CPU Time
(seconds; 25MHz-386i) 19.5 19 19.3

Number of
Identified Targets 68.08 67.58 69.26

Percent Correct 94.8 95.13 94.95
Association

Average Error in
Position Estimate 0.147 0.074 0.037

TABLE I Results of 100 Monte-Carlo runs for the 64 target scenario. (Sensor configuration I -

three passive sensors)
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Finally in Tables IV and V we present the results for sensor configuration 3, in which sensor

number 2 is replaced by a 2D Radar. Since the 2D sensors do not measure elevation angles of the

target, gating using hinge angles is not possible. This results in inefficient gating and causes CPU

times as high as 10 times the 3 passive sensor case. However, the association accuracy is

approximately the same as that of the 3 passive senor case.

Case 1 Case 2 Case 3
500 cells 1000 cells 2000 cells

Total Number of False 11.75 29.24 97.3
Alarms in scenario

Targets detected by 2 63.2 63.42 63.3
or more sensors

Targets detected by 12.45 10.38 10.86
only 2 sensors
Number after 21

Coarse Gating 239.61 224.68 5.84
Number after 208.54 20699 202.6
Fine Gating 208.54 _ _ _ __ _

Average CPU Time
(seconds; 25MHz-386i) 15.88 16.44 16.02

Number of
Identified Targets 63.87 64.06 65.18
Percent Correct 96.31 96.94 96.94

Association
Average Error in

Position Estimate 0.085 0.052 0.031

FABLE II Results of 100 Monte-Carlo runs for the 64 target scenario. (Sensor configuration 2 -

two passive and one 3D radar)
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a=50m. (3=20m. 0=101n.
500 resolution cells r r r

Total Number of False 11.75 13.31 15.6
Alarms in scenario

Targets detected by 2 63.2 63.22 63.2
or more sensors

Targets detected by 12.45 12.2 12.3
only 2 sensors
Number after
Coarse Gating 239.61 244.27 235.09
Number after 208.54 213.05 205.28
Fine Gating

Average CPU Time
(seconds; 25MHz-386i) 15.88 16.56 17.02

Number of
Identified Targets 63.87 63.96 63.61
Percent Correct 96.31 96.6 96.25

Association

Average Error in
Position Estimate 0.085 0.075 0.072

TABLE III : Results of 100 Monte-Carlo runs for the 64 target scenario. (Sensor configuration 2 -
two passive and one 3D radar)

Case 1 Case 2 Case 3
500 cells 1000 cells 2(X)0 cells

Total Number of False 9.4 29.8 86.7
Alarms in scenario

Targets detected by 2 63 62.9 63.1
or more sensors 6.

Targets detected by 11.4 11.6 10.7
only 2 sensors
Number after 955.4 1011.2 1007.4

Coarse Gating

Number after 304 254.9 257.8
Fine Gating

Average CPU Time 171.1154 157.2 7 .
(seconds; 25MHz-386i)

Number ofNmeof70.4 69.9 71,4
Identified Targcts
Percent Correct 94.6 94.9 95.1

Association I
Average Error in0

Position Estimate 0.101 0.058 0.035

'FABLE IV : Results of 100 Monte-Carlo runs for the 64 target scenario. (Sensor configuration 3 -
two passive and one 2D radar)

14



oY=50M a=20m. (Y= 10m.500 resolution cells r r r

Total Number of False 9.4 13.9 21.9
Alarms in scenario

Targets detected by 2 63 63.1
or more sensors 63.1

Targets detected by 11.4 11.4 11.4
only 2 sensors
Number after

Coarse Gating 955.4 1022.7 1059.17

Number after 304 298.5 296.5
Fine Gating

Average CPU Time 166.7
(seconds; 25MHz-386i) 154 165.1

Number of
Identified Targets 70.4 72.6 73.4
Percent Correct 94.6 945 94.5

Association

Average Error in
Position Estimate 0.101 0.092 0.092

TABLE V Results of 100 Monte-Carlo runs for the 64 target scenario. (Sensor configuration 3 -

two passive and one 2D radar)

3.3 Discussion of Results in Tables I-V

The association accuracy of the algorithm was about 95% for all the sensor configurations used.

In fact, the association accuracy appears to be independent of the sensor type and resolution

capabilities. The 5% missassocication was due to the poor target geometry. Although the field of

view of each sensor was 50 in azimuth and elevation, all the targets were located in a cluster
spanning less than 2° in azimuth and elevation. The targets were arranged in four closely spaced
vertical planes. In each vertical plane, the targets were placed in a regular rectangular grid.This

causes some ghosting and resolution problems. For each run, the target positions were perturbed by
+5 units in each direction. A significant number of targets (about 16 in the 500 cell resolution case in

Table I) could not be placed on unique planes and an average of three targets were unresolved per

sensor list due to random alignment of targets in the back plane behind those in the front plane. In
higher resolution cases, the false alarm rates were significantly higher. Therefore, the advantage
gained, if any, by higher sensor accuracy, was mitigated by the large number false alarms.

The average number of targets detected by all three sensors is approximately 52, about I I other

targets are detected by only two sensors as a result of non-unity sensor detection probability and

finite resolutions of sensors. For the 500 resolution cell case in Table I, for example, an average of

2.5 targets per list were unresolved, and another 3.2 missed due to nonunity sensor detection
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probability. The data association algorithm, however, consistently identified an average of 60 of the

63 targets detected by two or more sensors, thus illustrating the capability of the algorithm to

integrate two-sensor and three-sensor detections. The algorithm is also remarkably robust to heavy

clutter. Even with 38 false alarms per list, which translates to 6 false reports for every 10 targets, the

algorithm exhibits negligible degradation in association accuracy.

The average CPU time required by the 3-D Matching algorithm on a SUN386i computer is

approximately 3 seconds. The average CPU time required by the entire data association algorithm for

sensor :onfigurations 1 and 2 (Tables I-III) was between 15 and 20 seconds. Therefore, a major

part of the time (upto 80%) is spent in the cost assignment phase (non-linear Least Squares). The

coarse gating scheme based on hinge angles is both cheap and efficient. However, the final cost

assignment phase includes the formation of nonlinear least squares estimates of true target positions

from measurements in the candidate association - which typically take about 0.05 seconds per

candidate association. An increased number of candidate associations would therefore result in

unacceptably long computation times. Note that for denser clusters, involving multiple targets in the

same ghosting plane, the number of candidate associations could increase dramatically.

The 2D radars do not measure the elevation of the targets. It is, therefore, not possible to form

hinge angles for detections by the 2D radar. This results in inferior coarse gating and a large number

of candidate associations. It also causes an increased number of "ghost" associations, as is evident

from the increased number of "identified targets" in tables IV and V.

Note that the cost computation phase is highly parallelizable, Therefore, in time critical

applications, costs of candidate associations can be computed independently of each other on

multiple processors, resulting in a linear speedup with increasing numbers of processors.

IV. CONCLUSIONS

Any large-scale-surveillance and/or defense system is intrinsically a multisensor-multitarget

system, e.g., air-traffic control systems, a navigation and guidance system or the Space Surveillance

and Tracking System (SSTS). Many of these systems employ a wide variety of sensors ( Radar, IR

detector, sonar etc.). In this paper, we presented an algorithm to integrate reports from multiple

heterogeneous sensors to estimate target positions in a dense target environment.

The data association algorithm presented here has robust performance in the presence of very

heavy clutter. It deals with two sensor and three sensor detections in an unified framework. Even

though we intentionally simulated a reasonably difficult sensor- target geometry, the data association

algorithm produced consistently good association accuracy (- 95%), even though about 17% of the
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iargets are detected by only 2 sensors. Furthermore, close to half the detections at each sensor were

false and in spite of this, the overall performance is remarkably good - only 10% extra (Ialse ) targets

were accepted by the data association algorithm.

In this paper we simulated various sensor configurations. The three passive sensor configuration

performs satisfactorily, although, replacing one of the passive sensors with a 3D radar increases the

association accuracy by about 1%. A 3D radar also reduces the number of candidate associations and

hence the time required to assign costs to the associations. Moreover, the graph for the 3-D matching

problem is sparser compared to the three passive sensor case, which also speeds up the matching

algorithm. The overall savings in CPU time is about 25% compared to that of a three passive sensor

case. The 2D radar does not measure the elevation of the source of detection; hence, hinge angle

gating is not possible for associations involving measurements from 2D radar. This result in an

increase in the number of candidate associations and upto 10 fold increase in CPU time compared to

the three passive sensor case. The data association algorithm could benefit from a computationaly

cheap, yet efficient, gating scheme for 2D radars.

The challenge in tracking problems is not only to estimate positions, but also to form tracks and

estimate the velocity and acceleration of each target. The data association problem can be

reformulated to associate data from multiple scans from multiple sensors, and to form estimates of

target states. The optimization problem can then be solved using a multi-dimensional matching

problem as outlined in 1121 . Moreover, we may virtually eliminate the ghosting problem in target

position estimation by associating angle only measurements of four or more passive sensors. The

price update in [9,101 extends naturally to NI-dimensional ( M > 3) matching algorithms. These

issues are currently under investigation.
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